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Abstract

Background: Knowledge of spatial patterns of dengue virus (DENV) infection is important for understanding transmission
dynamics and guiding effective disease prevention strategies. Because movement of infected humans and mosquito vectors
plays a role in the spread and persistence of virus, spatial dimensions of transmission can range from small household foci to
large community clusters. Current understanding is limited because past analyses emphasized clinically apparent illness and
did not account for the potentially large proportion of inapparent infections. In this study we analyzed both clinically
apparent and overall infections to determine the extent of clustering among human DENV infections.

Methodology/Principal Findings: We conducted spatial analyses at global and local scales, using acute case and
seroconversion data from a prospective longitudinal cohort in Iquitos, Peru, from 1999–2003. Our study began during a
period of interepidemic DENV-1 and DENV-2 transmission and transitioned to epidemic DENV-3 transmission. Infection
status was determined by seroconversion based on plaque neutralization testing of sequential blood samples taken at
approximately six-month intervals, with date of infection assigned as the middate between paired samples. Each year was
divided into three distinct seasonal periods of DENV transmission. Spatial heterogeneity was detected in baseline
seroprevalence for DENV-1 and DENV-2. Cumulative DENV-3 seroprevalence calculated by trimester from 2001–2003 was
spatially similar to preexisting DENV-1 and DENV-2 seroprevalence. Global clustering (case-control Ripley’s K statistic)
appeared at radii of ,200–800 m. Local analyses (Kuldorf spatial scan statistic) identified eight DENV-1 and 15 DENV-3
clusters from 1999–2003. The number of seroconversions per cluster ranged from 3–34 with radii from zero (a single
household) to 750 m; 65% of clusters had radii .100 m. No clustering was detected among clinically apparent infections.

Conclusions/Significance: Seroprevalence of previously circulating DENV serotypes can be a predictor of transmission risk
for a different invading serotype and, thus, identify targets for strategically placed surveillance and intervention.
Seroprevalence of a specific serotype is also important, but does not preclude other contributing factors, such as mosquito
density, in determining where transmission of that virus will occur. Regardless of the epidemiological context or virus
serotype, human movement appears to be an important factor in defining the spatial dimensions of DENV transmission and,
thus, should be considered in the design and evaluation of surveillance and intervention strategies.
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Introduction

Dengue viruses (DENVs) cause more human morbidity and

mortality worldwide than any other arthropod-borne virus [1,2].

The principal vector is Aedes aegypti, a highly anthropophilic

mosquito with relatively short dispersal tendencies that is known to
bite people primarily during daylight hours as they engage in their

daily activity patterns [3,4,5]. Interactions between relatively

mobile humans and relatively sedentary mosquitoes are processes

that underlie the dynamics of DENV transmission through space

and time. Human movement can transport virus across small

(households and neighborhoods) and large scales (village, city,

country, and international) [6,7,8]. The contribution of infected
female mosquitoes is restricted to short-range flight dispersal

www.plosntds.org 1 February 2012 | Volume 6 | Issue 2 | e1472

anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

The authors have declared that no competing interests exist.

daily activity patterns [3,4,5]. Interactions between relatively

mobile humans and relatively sedentary mosquitoes are processes

that underlie the dynamics of DENV transmission through space

21



(household, neighborhood) [3,9,10,11,12,13]. At small scales,

several investigators have described dengue cases clustered within

a household or neighboring houses [14,15,16,17,18,19,20]. The

spatial dimension of DENV transmission beyond this very local

scale of a household and its neighbors has been difficult to measure

and thus a challenge to define [6,21,22]. One limitation is that

previous investigations tended to focus on individuals with

detectable dengue disease (fever and more severe illness), which

represents only a fraction of all infections because, typically, a

significant portion of human dengue infections are inapparent

[23,24,25].

Transmission patterns of DENV in a geographic area are

influenced by complex immunological interactions among the four

closely related, antigenically distinct dengue viruses (DENV-1,

DENV-2, DENV-3 and DENV-4) that make up the DENV

complex [26]. Infection with one or more serotype(s) can result in

a range of clinical outcomes, from asymptomatic infection to

classic dengue fever, to more serious dengue hemorrhagic fever

(DHF) and dengue shock syndrome (DSS). Because serotypes are

antigenically distinct, primary infection confers lifelong homolo-

gous immunity, whereas heterologous cross-protection is short-

lived [1,27,28,29]. In many parts of Southeast Asia, especially in

large urban centers, endemic transmission of all four serotypes

occurs and broad scale, super-annual oscillations in dengue

incidence have been reported [30]. In contrast, in many parts of

Central and South America, epidemic transmission over the past

three decades has occurred in distinct waves that are associated

with invasion and amplification of single DENV serotypes or

genotypes [31]. In those settings, endemic transmission patterns

can be influenced by ambient levels of serotype-specific herd

immunity and epidemic transmission can occur when a novel virus

serotype enters a region where the majority of the population is

immunologically naı̈ve [17].

Since the re-introduction of DENV-1 into Iquitos during 1990,

the city has experienced continuous DENV transmission with

major epidemics occurring in association with novel serotype

introductions. DENV-1 was introduced in 1991 and DENV-2 in

1995 [32,33,34]. By 2000, DENV-1 and DENV-2 were being

transmitted at low, consistent levels from year to year. DENV-3

was then introduced in 2001 [35] and by late 2002 had replaced

DENV-1 and DENV-2 as the dominant circulating serotype,

causing a major outbreak of febrile illness. The local Peruvian

Ministry of Health (PMoH) reacted by implementing household-

level mosquito interventions (i.e., spraying insecticide inside

houses), which appears to have truncated the epidemic [25].

To more carefully delineate patterns of transmission in Iquitos,

we examined serological data from a city-wide, long-term,

prospective, longitudinal study to describe and compare the

spatial dimensions of DENV transmission across periods that

transitioned from relatively low to high force of infection; i.e., from

interepidemic to epidemic transmission. We compared clustering

of infections (global and local) to test the hypothesis that the

invasion of a new virus serotype or genotype follows a specific

pattern: rapid, broad scale geographic spread at low levels [25],

followed by large clusters of increased force of infection in

predictable geographic regions. We also compared clustering of

acute cases, as defined by Morrison et al 2001 [25]. At distances

less than 100 m, we suspect that both mosquitoes and humans

participate in virus transmission [3,9,10,11,12,13], but beyond

100 m, it is likely primarily humans that define the spatial

dimensions of the clusters. Previous research indicates that human

movement often occurs well beyond a 100 m radius from their

home (Vazquez Prokopec, Paz Soldan, Elder, Stoddard unpub-

lished). Our results provide details on the dynamics of DENV

invasion and establishment, have implications for evaluating

intervention strategies, can be used to enhance dengue surveillance

and prevention programs, and may be applicable to an improved

understanding of transmission dynamics of other mosquito-borne

pathogens.

Methods

Human Use Statement
The study protocol was approved by the University of

California, Davis (Protocol 2220210788-4(994054), Instituto

Nacional de Salud, and Naval Medical Research Center (Protocol

#NMRCD.2001.0008 (DoD 31574) Institutional Review Boards

in compliance with all Federal regulations governing the

protection of human subjects. STROBE checklist included in

supporting information (Checklist S1).

Study area and population
Our cohort study was conducted in Iquitos, an isolated city of

,400,000 people in the northeastern Amazon Basin portion of

Peru. We divided the city into eight distinct geographical zones for

our study (described in detail in Morrison et al 2004 [36]). The

population consists of an approximate 1:1 sex ratio, and about

36% of the population , = 17 years of age (http://desa.inei.gob.

pe/).Written informed consent was obtained from participants

older than 17 years and from parents of participants younger than

18. In addition, assent was obtained from participants 8–17 years

of age. If participants were unable to read and sign the consent

form, oral consent was obtained and documented. Blood samples

were obtained from participants between January 1999 and

August 2003, as described in Morrison et al 2010 [25] (Figure 1).

Serum samples were tested for antibody to DENV serotypes based

on plaque reduction neutralization test (PRNT) as described

previously [25]. Briefly, heat-inactivated sera were incubated with

DENV (DENV-1:16007; DENV-2: 16681; DENV-3: IQT1728)

prior to inoculation onto BHK-21 cells. The level of neutralization

used for the cutoff was PRNT70, with cutoff dilutions of 1:60, 1:80

and 1:60 for DENV-1, DENV-2 and DENV-3, respectively. For

more details, see Morrison et al 2010 [25].

Author Summary

To target prevention and control strategies for dengue
fever, it is essential to understand how the virus travels
through the city. We report spatial analyses of dengue
infections from a study monitoring school children and
adult family members for dengue infection at six-month
intervals from 1999–2003, in the Amazonian city of Iquitos,
Peru. At the beginning of the study, only DENV serotypes 1
and 2 were circulating. Clusters of infections of these two
viruses were concentrated in the northern region of the
city, where mosquito indices and previous DENV infection
were both high. In 2002, DENV-3 invaded the city,
replacing DENV-1 and -2 as the dominant strain. During
the invasion process, the virus spread rapidly across the
city, at low levels. After this initial phase, clusters of
infection appeared first in the northern region of the city,
where clusters of DENV-1 and DENV-2 had occurred in
prior years. Most of the clusters we identified had radii
.100 meters, indicating that targeted or reactive treat-
ment of these high-risk areas might be an effective
proactive intervention strategy. Our results also help
explain why vector control within 100 m of a dengue case
is often not successful for large-scale disease prevention.

Spatial Dimensions of Dengue Transmission
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Extension of Morrison et al 2010
Morrison et al 2001 [25] provide a detailed description of overall

patterns of DENV transmission in Iquitos from 1999–2005. In

that study, the authors described data collected through active

school-based surveillance and a longitudinal cohort, showing

increasing seroprevalence of DENV-3 throughout the study. Here

we extend these observational results with a more detailed analysis

of spatial patterns in human infection.

Figure 1. Distribution of cohort participant houses throughout the 8 zones of Iquitos. Each circle marks the location of a participant
home.
doi:10.1371/journal.pntd.0001472.g001
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Cases and controls
Infections (i.e., cases) for our analyses below were defined as

participants who showed evidence of serotype-specific serocon-

version between two paired blood samples, based on PRNT.

Controls were defined as susceptible, seronegative participants

who had no serological evidence of serotype-specific infection

between paired blood samples.

Both cases and controls were limited to participants whose

paired blood samples were less than 242 days apart, corresponding

to the 75% quartile of the distribution of intervals. Analyses of the

dataset were run independently for each distinct serotype. A

trimester-specific dataset was constructed containing all cases and

controls with middates falling within that period. Yearly trimester

intervals (Jan–Apr: end of the high transmission season, May–Aug:

low transmission season, and Sept–Dec: beginning of the high

transmission season) were chosen for analyses because they

capture intra-annual variation in the Iquitos DENV transmission

season. Although there is variation from year to year, the high

DENV transmission season in Iquitos generally occurs from Sept–

Apr, unless emergency vector control interventions decrease

transmission prior to April. In general, consistently lower rates

of transmission were observed between May and July [25,31].

Seroprevalence
At the initiation of the cohort (Jan 1999), DENV-1 and DENV-

2 were circulating at low levels throughout Iquitos. The baseline

serostatus of participants was determined over the eight geo-

graphic zones using samples collected between January and

October of 1999 [25].

To measure the prevalence of antibodies for DENV-3

throughout the course of its invasion into Iquitos, overall

participant serostatus was calculated using the most recent sample

taken from each participant, beginning in Aug 2002. As with

baseline seroprevalence rates, cumulative seroprevalence of

DENV-3 was estimated for the eight Iquitos geographical regions

from Jan 2002–May 2003.

To determine if the invasion of DENV-3 was positively

correlated with the baseline seroprevalence of DENV-1/DENV-

2 across the city prior to its introduction, we conducted a

Spearman Rank correlation test, comparing the DENV-3

seroprevalence by zone in each trimester to the baseline DENV-

1/DENV-2 seroprevalence. For this analysis, as the r coefficient

approaches 21 or 1 the two patterns are more negatively or

positively correlated, respectively.

Sampling effort across the eight geographical zones varied, due

primarily to the location of commercial versus residential areas of

the city (Figure 2). To visualize the spatial pattern of accumulating

seroprevalence throughout the study period, we used spatial

kernels based on the intensity of points in the study area for each

trimester. Points were the coordinates of participants’ homes. We

first generated a kernel for the pattern of all participants with a

middate in a given trimester. Similarly, we then generated a kernel

of individuals immune to DENV-3 (presenting with antibody in

the first blood sample). Because of the nature of kernel estimation,

estimates where there are no points nearby tend to be small.

Calculating the ratio of immune to all participants to calculate

seroprevalence would, therefore, result in artificially high estimates

when both of these values were small. For the kernel of immune

individuals, we thus set all values falling into the first quartile to

zero in order to avoid gross overestimates of seroprevalence. All

kernels were estimated assuming a standard, isotropic Gaussian

kernel with fixed bandwidth (s= 175), which was determined by

visual inspection of the results. All analyses were conducted using

the SpatStat package of the R Statistical Computing Environment

[37].

Spatial analyses
To determine the spatial dynamics of DENV transmission, we

examined patterns of both global and local clustering. The global

analysis was used to examine the spatial pattern of seroconversions

within a defined reference window (the eight zones) and, by

comparison to the pattern of controls, to test the hypothesis that

seroconversions clustered in space. On the other hand, local

clustering uses a specific spatial window to look for the over-

dispersion of cases in comparison to controls within that window.

This window of delimited radius X moves across the geocoded

data for each time interval and indicates when cases appear in

greater numbers than expected.

Global pattern clustering
Global patterns of dengue seroconversions were analyzed within

each trimester using a case-control Ripley’s K statistic [38]. When

used within a Monte Carlo framework, this allows for inferences to

be made about the structure of a point pattern. To test the

hypothesis that dengue seroconversions clustered in space, we

simulated an inhomogeneous K function (because of the

heterogeneous sampling pattern) comparing random samples of

control points to cases of dengue infection in each time interval

using the participants’ home as their spatial reference. Simulations

were conducted by resampling the control points with replacement

99 times to estimate the minimum and maximum K functions for

susceptibles, generating a 99% probability envelope. The number

of control points sampled was always equivalent to the number of

cases. Within this framework, deviation of the K function for

DENV seroconversions outside of the probability envelope at a

specific distance was evidence of global clustering (if above the

envelope) or repulsion (if below the envelope) and supports

rejection of the null hypothesis that the patterns are equivalent at a

probability level of 0.01 [37].

Local pattern clustering
Local clustering of serotype-specific DENV seroconversions was

detected using the Kuldorff spatial scan statistic [39,40] with

SaTScan software verson 8.1.1 (http://www.satscan.org). This

method uses a retrospective spatial Bernoulli probability model to

detect significant spatial clustering of cases. Briefly, using the

Bernoulli probability distribution with Monte Carlo simulation

repeated 999 times, the model tests the statistical likelihood of the

distributions of cases in relation to controls for a moving circular

spatial window, determining if a greater than expected number of

cases occurred in an area. We assessed patterns across several

different spatial radii (100, 300, 600 and 900 m) for each serotype-

specific trimester dataset. Spatial scan analyses were only run for a

specific serotype and trimester when more than two seroconver-

sions were observed during that time period. In total, 92 analyses

were conducted (32 for DENV-1, 32 for DENV-2, and 28 for

DENV-3). Identical SaTScan analyses were run on 64 laboratory

confirmed, acute, apparent DENV infections captured by active

surveillance for febrile illness, as described previously (for details

see Morrison et al [25] and Rocha et al [41]).

Results

Study population
A total of 3,110 participants met the inclusion criteria for our

analyses. As described in Morrison et al 2010 [25], the majority of

Spatial Dimensions of Dengue Transmission
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participants (n = 2,393, 76.93%) were under the age of 18. The

number of males (n = 1,305, 41.96%) was less than that of females.

Cases and Controls
Over the course of the study period, we detected a total 607

seroconversions to DENV (68 to DENV-1, 58 to DENV-2 and

481 to DENV-3; Table 1). The total number of controls for each

serotype/trimester is presented in Table 1. The population

included in the analyses varied by serotype for specific years and

trimesters, due to changes in serotype-specific immunity over time.

Seroprevalence
From samples taken between January and October 1999, a total

of 1,999 participants met the inclusion criteria listed above. Of

those, monotypic neutralizing antibodies (NtAbs) against DENV-1

and DENV-2 were detected in 12% (n = 240) and 14.7% (n = 294),

respectively. A total of 1,054 participants (52.7%) had detectable

NtAbs against both DENV-1 and DENV-2 at baseline, whereas

20.6% (n = 411) showed no evidence of prior dengue infection.

These percentages are similar to those reported by Morrison et al

2010 [25], indicating that the population meeting the inclusion

criteria was similar in serostatus to those of the overall cohort.

When analyzed by zone, DENV-1 and DENV-2 seroprevalence

show a distinct geographic structure (Figure 3), similar to that

previously described by Morrison et al 2010 [25]. At the initiation

of the study, the prevalence of DENV-3-specific antibodies was

low (,5%), but rapidly increased city-wide over the course of the

study with distinct differences between city zones.

Invasion of DENV-3 into Iquitos is clearly demonstrated by

changes in temporal and geographic seroprevalence patterns

(Figure 4, Figure 5, Table 2). Transmission was first detected in the

city center (Iquitos [IQ]) during the May–Aug 2001 trimester

(2001.2) and then was detected at rates of less than 5% in all but

one of the eight geographic zones during the Sep–Dec 2001

trimester. Although seroprevalence rates remained low throughout

the city during the first part of 2002, virus was concentrated in the

northern zones of Maynas (MY) and IQ. As indicated by Morrison

et al 2010 [25], other zones lagged behind MY and IQ, with most

failing to reach the levels of seroconversion observed in MY, where

the highest overall DENV transmission rates occurred.

The Spearman r correlation coefficient comparing the DENV-

3 seroprevalence in the first trimester of 2002 with the baseline

seroprevalence of DENV-1/DENV-2 is close to zero (0.24) and is

not statistically significant (p = 0.58). This implies little to no

correlation between the two patterns. The correlation between

DENV-1/DENV-2 seroprevalence and DENV-3 seroprevalence

increased in each subsequent trimester, with r= 0.48 (p = 0.24)

and 0.62 (p = 0.12) in the second trimester and third trimesters of

2002, respectively. In the first trimester of 2003, r increased to

0.67 (p = 0.08). It is important to note that these data only follow

the invasion of DENV-3 through its first two years in Iquitos. Due

to a change in the sampling scheme after the 2002–2003

transmission season, we were unable to compare the seropreva-

lence data from the final cohort sample collected in 2005.

Global patterns
To facilitate visual interpretation of the Monte Carlo K-

function results, we plotted the ratio of the difference between the

K functions for cases and controls over the K-function for controls.

We failed to reject the null hypothesis that the pattern of cases was

Figure 2. Distribution of all participants sampled during 4-month interval. Black = DENV-3 susceptible, red = DENV-3 infected,
green = DENV-3 immune.
doi:10.1371/journal.pntd.0001472.g002
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different from that of controls if the cases K function fell between

the high and low control K functions (99% probability envelope).

For DENV-1 and DENV-2, the number of seroconversions within

any given trimester was small and always consistent with the

pattern of controls. When considering all seroconversions within

an epidemiological season, DENV-1 showed evidence of clustering

at ,200 m during the 2001–2002 season. For DENV-2 the

pattern of seroconversions was more widely dispersed than

expected during the 2000–2001 season at distances of ,220 m–

500 m. Overall, however, there was little evidence for spatial

structuring of DENV-1 and DENV-2. In the case of DENV-3, we

observed that during the first trimester when seroconversions

occur (2001.3), the pattern of cases was no different from that of

controls, providing evidence that this new serotype had rapidly

spread within one trimester at low levels to all parts of the city

(Figure 6). In the next trimester (2002.1), however, the pattern was

highly over-dispersed relative to controls across a range of scales

from 200 m to ,700 m. Examination of the pattern of

seroconversions was consistent with there being a focus in the

northern region of the city in the MY zone with additional

seroconversions radiating out from there. During the next

trimester (2002.2) the pattern of cases again indicated over-

dispersion, but at broader scales ,800 m. During the third

trimester (2002.3), DENV-3 seroconversions appeared more

clustered at small scales - ,15 m and ,180 m – possibly

reflecting transmission among neighboring households and within

neighborhoods. During the first trimester of 2003, after the PMoH

intervention, the pattern of cases was no different than that of

controls.

When analyzed by epidemiological season, DENV-3 serocon-

versions were highly clustered relative to expectation up to

,100 m during the initial invasion phase during the 2002 season

(Jul 1 2001–Jun 30 2002). For the 2003 season (Jul 1 2002–Jun 30

2003) cases were equivalent to controls. The fact that at a broader

temporal scale (season) the pattern of seroconversions was

clustered during the 2002 season, while the pattern by trimesters

was over-dispersed, appears to reflect the existence of alternate,

neighborhood-scale (,200–800 m) foci occurring at different

times during the invasion and establishment of the virus.

Local patterns
From the 92 spatial scan analyses run, a total of 23 significant

(p = ,0.05) clusters were identified: eight for DENV-1 and 15 for

DENV-3 (Table 3). Of these, 65% (n = 15) had radii greater than

Table 1. Total serotype-specific cases and controls by trimester.

DENV-1

YEAR TRIMESTER CASES CONTROLS POPULATION

1999 MAY–AUG 3 285 288

2000 JAN–APR 10 599 609

2000 SEPT–DEC 6 352 358

2001 JAN–APR 9 296 305

2001 SEPT–DEC 8 289 297

2002 JAN–APR 16 271 287

2002 MAY–AUG 7 392 399

2002 SEPT–DEC 9 344 353

DENV-2

YEAR TRIMESTER CASES CONTROLS POPULATION

1999 MAY–AUG 6 241 247

2000 JAN–APR 18 505 523

2000 MAY–AUG 4 294 298

2000 SEPT–DEC 9 280 289

2001 JAN–APR 3 237 240

2002 JAN–APR 3 236 239

2002 MAY–AUG 6 361 367

2002 SEPT–DEC 9 343 352

DENV-3

YEAR TRIMESTER CASES CONTROLS POPULATION

2001 JAN–APR 4 747 751

2001 MAY–AUG 0 391 391

2001 SEPT–DEC 28 970 998

2002 JAN–APR 69 676 745

2002 MAY–AUG 233 977 1210

2002 SEPT–DEC 130 727 857

2003 JAN–APR 17 520 537

doi:10.1371/journal.pntd.0001472.t001

Spatial Dimensions of Dengue Transmission
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100 m. No significant clusters were detected for DENV-2 during

any trimester. Similarly, we detected no significant clusters of

febrile cases captured by active surveillance.

Clusters of seroconversions to DENV-1 were spread throughout

the city, with different high-risk zones each trimester (Figure 3). No

visual pattern appeared to link transmission clusters from one

period to the next.

For epidemic DENV-3, however, a more apparent pattern

emerged. As time passed, clusters concentrated in areas following

the distinct pattern of seroprevalence detected for DENV-1 and

DENV-2 during 1999 (Figure 3, Figure 4). Clusters began in the

north of the city, where overall DENV seroprevalence rates were

highest. For example, in the northern region of the city in the

second trimester of 2002 statistically significant clusters are

observed in MY, where seroprevalence rates increased from

12% in the second trimester of 2002 to 27% in the third. In

contrast, in other zones with significant but overall lower DENV

transmission, we were unable to identify statistically significant

clustering.

Discussion

Understanding the underlying spatial dimensions of DENV

transmission in different epidemiological contexts will improve our

understanding of virus transmission dynamics and aid in the

design and deployment of preventative and emergency control

measures. While we did not detect spatial clustering among people

with clinically apparent DENV infections, all infections (i.e.,

apparent and inapparent) exhibited spatially distinct transmission

patterns. Although details of DENV transmission differed between

interepidemic and epidemic periods, we speculate that in Iquitos

human movement is a unifying process in delimiting virus

transmission across different epidemiologic contexts.

During the interepidemic period (1999–2001), DENV-1/

DENV-2 incidence rates were highest in the southern regions of

the city where overall seroprevalence was lowest [25]. Significant

clustering of DENV-2 was not detected throughout this study,

likely due to the fact that only 49 seroconversions were detected

during the study period. However, we did detect significant

Figure 3. Seroprevalence of DEN-1 and DEN-2 in the 8 geographic zones of Iquitos in October 1999. Clusters of DENV-1 are indicated by
colored circles (purple = May–Aug 1999; red = Jan–Apr 2000; pink = Sep–Dec 2001; green = Jan–Apr 2002). No significant clusters of DENV-2 were
identified during the study period.
doi:10.1371/journal.pntd.0001472.g003
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Figure 4. Seroprevalence of DEN-3 by trimester. Pink circles indicate significant clusters.
doi:10.1371/journal.pntd.0001472.g004

Figure 5. Seroprevalence kernel of DENV-3 by trimester.
doi:10.1371/journal.pntd.0001472.g005
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clusters of DENV-1 seroconversions in northern regions of the

city, where DENV seroprevalence was highest. Mosquito

populations monitored throughout the study showed high adult

Ae. aegypti indices in the northern zone of Maynas, where

seroprevalence was also highest, indicating an elevated level of

infection risk [25,36].

Our results thus indicate that a positive relationship may exist

between mosquito abundance and the risk of human DENV

infection. At the levels we observed, herd immunity was

insufficient to counteract risk from other factors, such as elevated

mosquito exposure, which could serve as a catalyst for neighbor-

hood-specific variation in DENV transmission. The relationship

between entomological indices and DENV transmission has been

difficult to define [21,22]. Malariologists reported that increased

infective mosquito bites per person per day [entomological

inoculation rate (EIR)] correlates with higher malaria incidence

in humans [42,43,44,45]. A similar relationship has not, however,

been established for DENV and Ae. aegypti, but is worth exploring

in greater detail [46].

We did not identify spatial patterns among 64 people with overt

illness, implying that defining spatial transmission patterns based

solely on clinically apparent DENV infections can be misleading.

Spatial patterns for seroconversions were more easily detected

during the DENV-3 invasion than during the interepidemic

period. After initially spreading rapidly and evenly at low rates

throughout the city, distinct spatial patterns of DENV-3

transmission were detected. For example, MY, the first zone to

experience clusters of DENV-3, also had the highest combined

seroprevalence rates for DENV-1 and DENV-2 prior to the

DENV-3 introduction. DENV-3 transmission started earlier and

was higher overall in MY than in the rest of the city. This

observation was consistent with there being underlying spatial

heterogeneity of DENV transmission in Iquitos, perhaps associ-

ated with some aspect of the mosquito populations, that puts

persons living in certain parts of the city at higher intrinsic risk of

infection than people in other locations.

As DENV-3 invaded the city, its establishment closely followed

the geographic patterns observed for seroprevalence of the DENV

serotypes that preceded it. While the results of the correlation rank

test were not statistically significant at a 0.05 level, the pattern of

DENV-3 seroprevalence appeared to be converging on that of

DENV-1/DENV-2. Had we maintained the same sampling

scheme throughout the remainder of the DENV-3 invasion, we

would anticipate the correlation of the patterns to become

significant. Historic, geographically distinct seroprevalence pat-

terns, therefore, may be useful for prioritizing dengue surveillance

(i.e., infection in humans and/or mosquitoes) and prevention (i.e.,

mosquito control or vaccination). Preemptive intervention could

Table 2. Seroprevalence rates DENV-3 by trimester in the 8 regional zones of Iquitos.

2001 2002 2003

ZONE MAY–AUG SEPT–DEC JAN–APR MAY–AUG SEPT–DEC JAN–APR MAY–AUG

BG 0% 0% 2% 2% 12% 13% 13%

TA 0% 1% 3% 6% 18% 20% 20%

PT 0% 1% 3% 7% 13% 15% 15%

IQ 1% 2% 6% 11% 16% 16% 16%

PU 0% 1% 2% 7% 15% 19% 19%

MC 0% 1% 4% 7% 20% 22% 22%

MY 0% 1% 6% 12% 27% 28% 29%

SA 0% 1% 2% 3% 15% 16% 17%

doi:10.1371/journal.pntd.0001472.t002

Figure 6. Monte Carlo K statistic. The difference between the observed and expected over the expected is plotted against distance, r. The grey
envelope is the 99% probability envelope based on the pattern of controls and the black line is the K function ofor the cases (seroconversions). If the
line strays above the envelope, this indicates clustering. If it strays below, this indicates repulsion or over dispersion.
doi:10.1371/journal.pntd.0001472.g006
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be directed towards areas that are considered particularly

susceptible to elevated risk of virus transmission and from which

virus could spread to other locations. Focusing control on areas of

high transmission may help diminish the impact of a novel virus

invasion. The effect that targeting areas with high levels of

transmission may have on transmission at broader geographic

scales remains to be determined. Targeting areas that theoretically

contribute most to transmission [47,48] is attractive because it

could be a more effective way to use limited resources for disease

prevention than uniform application over large geographic areas

[21,22].

Transmission foci during epidemic and interepidemic periods

had radii that exceeded 100 m in 65% of significant clusters,

indicating that spatial dimensions for DENV transmission

extended beyond the level of individual households and the flight

range Ae. aegypti [3]. The relative role of humans versus mosquitoes

in DENV movement within 100 m has not been resolved. At

greater distances, human movement of virus appears to be an

important factor in defining the spatial dimensions of DENV

transmission regardless of the epidemiologic context; i.e., interep-

idemic and epidemic periods as well as during the invasion and

establishment of a novel virus (Stoddard et al in prep).

Since the completion of our study, DENV-3 caused significant

outbreaks of disease in 2004, 2006–2007, and again in Feb 2008

when the first isolates of DENV-4 in Iquitos were recovered from

participants in a clinic-based fever study [31]. Following its

introduction, DENV-4 became the main circulating virus

throughout the city until late 2010 when an Asian-American

strain of DENV-2 was introduced into Iquitos, causing a large city-

wide outbreak [49,50]. Analyses of the spatial dimensions of these

two serotype introductions would be useful for determining

whether the patterns remain consistent. Because subsequent

epidemiological studies used distinct spatial designs and had

distinct research objectives we are unable to include those data in

this presentation, but we can confirm that MY was one of the first

effected during both the DENV-4 and DENV-2 outbreaks (Scott

and Morrison unpublished).

Our study had three notable limitations. First, since we only

know the time interval during which infection occurred but not its

exact date, we may not have identified all significant virus

transmission clusters. DENV transmission and spread in a

community can happen rapidly. Although drawing blood at six-

month intervals is appropriate for the analysis of seroprevalence

over time, a shorter temporal window between assessments of

serostatus might improve resolution in spatial analyses of DENV

invasion. This limitation might in part account for our inability to

predict clusters in certain areas where seroprevalence rates quickly

increased over time. This could occur because the period between

Table 3. Significant clusters of DEN-1 and DEN-3 from 1999 through April of 2003.

CLUSTERS OF DENV-1

Year Trimester Parameter (meters) Cases Controls Radius (meters) P-value

1999 MAY–AUG 100 3 0 8.7 , = .001

2000 JAN–APR 600 3 3 330 0.015

2001 SEPT–DEC 300 4 4 200 0.006

2001 SEPT–DEC 600 6 15 530 , = .001

2001 SEPT–DEC 600 5 17 580 0.015

2001 SEPT–DEC 900 6 23 750 0.008

2002 JAN–APR 600 8 23 600 0.032

2002 JAN–APR 900 10 35 610 0.01

CLUSTERS OF DENV-3

Year Trimester Parameter (meters) Cases Controls Radius (meters) P-value

2001 SEPT–DEC 100 3 0 0 0.015

2001 SEPT–DEC 300 8 29 130 0.004

2002 JAN–APR 100 6 4 33 0.022

2002 JAN–APR 300 18 45 260 0.006

2002 JAN–APR 300 13 30 270 0.032

2002 JAN–APR 600 34 120 600 , = .001

2002 MAY–AUG 300 20 12 230 0.002

2002 MAY–AUG 300 31 43 250 0.011

2002 SEPT–DEC 100 21 14 98 , = .001

2002 SEPT–DEC 100 7 0 7.2 0.002

2002 SEPT–DEC 100 9 2 82 0.003

2002 SEPT–DEC 100 5 0 18 0.026

2002 SEPT–DEC 100 5 0 40 0.026

2002 SEPT–DEC 300 30 22 190 , = .001

2002 SEPT–DEC 300 33 48 150 , = .001

No significant clusters of DENV-2 were identified during the study period.
doi:10.1371/journal.pntd.0001472.t003
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two blood draws may span two trimesters. For instance if the first

sample was taken November 30 2001 and the second April 28

2002, the middate would occur in the first trimester of 2002,

whereas the actual infection might have occurred in the third

trimester of 2001. Despite these limitations, our analyses still

provide insights across all infections, including those that were

inapparent. Second, because of our sampling scheme, we focused

our spatial analyses of seroprevalence at the zone level. Dividing

the cohort into smaller units (i.e., blocks) would not properly

represent the population. Third, our school-based active surveil-

lance sampling scheme may not have identified all acute DENV

infections and thus contributed to the lack of detectable spatial

patterns among clinically apparent infections. In subsequent

cohort studies, we used a different sampling scheme in an effort

to examine transmission patterns at smaller spatial scales.

Current World Health Organization (WHO) guidelines, which

recommend vector control be administered to households within a

400 m radius of a dengue case, are consistent with the

transmission clusters we detected [51]. Vector control at this scale

in a city such as like Iquitos could, however, require that hundreds

of houses be treated for each case. Consequently, in practice a

radius of 100 m is often adopted. Even though small scale

clustering is clearly important, our local and global analyses

identified a significant proportion of spatial clusters that extended

well beyond 100 m. Our results, therefore, provide an additional

explanation for why vector control within 100 m of a dengue case

has been less successful than desired for larger scale disease

prevention [21,22].

Results from our cluster analyses indicate that if areas of

primary invasion and/or elevated amplification can be treated

based on historical patterns of transmission (i.e., seroprevalence)

either a priori or reactively, it may be feasible to block virus

dispersal. The majority (93%) of clusters we detected had radii

,400 m, indicating that neighborhoods where initial cases are

identified could be intervention targets. A substantial challenge for

reactive control will be the need to quickly apply the intervention

at the correct locations during the early phases of invasion when

most human infections are clinically inapparent and therefore

difficult to detect in disease-based surveillance systems [24].

Alternatively, it may be more productive to focus on character-

izing historical seroprevalence patterns as a means for prioritizing

spatially targeted surveillance and preemptive intervention. The

incidence was previously detected, and from where virus may

disseminate to the other parts of the city.
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